
AP Precalculus Syllabus 

RCAS Policies/Procedures 

Students will be required to follow all RCAS policies and procedures.  To view the RCAS High 

School Student Handbook, click handbook. 

Course Description 

Taking AP Precalculus prepares you for other college-level mathematics and science courses. 

During the course, you will explore everyday situations using mathematical tools and lenses. You 

will also develop an understanding of modeling and functions, and examine scenarios through 

multiple representations. The course framework outlines content and skills needed for careers 

in mathematics, physics, biology, health science, social science, and data science.  Skills you will 

learn include algebraically manipulating functions, equations, and expressions; translating 

mathematical information between representations; and communicating with precise language 

and providing rationales for conclusions.   

Grading 

Official grades will be kept in Skyward.  Points shall be awarded for tests.  Points will be awarded 

and collected cumulatively through the year.   

Textbook 

Precalculus with Trigonometry – Forester (2012) 

Reading 

None 

Optional Reading  

None 

Instructional Resources 

AP Classroom – www.apclassroom.collegeboard.org 

Essential Questions 

• What does it look like to demonstrate procedural and symbolic fluency? 

• What does it look like to show multiple representations? 

• What does it look like for students to communicate and reason?  

 

Essential Learning Intentions 

Unit 1 – Polynomial and Rational Functions (30 – 40% of exam) (30 – 40 class periods) 

1.1 – Change in Tandem (2 class periods) 

1.1.A – Describe how the input and output values of a function vary together by comparing 

function values. 
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1.1.A.1 – A function is a mathematical relation that maps a set of input values to a set of 

output values such that each input value is mapped to exactly one output value. The set 

of input values is called the domain of the function and the set of output values is called 

the range of the function. The variable representing input values is called the 

independent variable, and the variable representing output values is called the 

dependent variable. 

1.1.A2 – The input and output values of a function vary in tandem according to the 

function rule, which can be expressed graphically, numerically, analytically, or verbally. 

1.1.A.3 – A function is increasing over an interval of its domain if, as the input values 

increase, the output values always increase. That is for all a and b in the interval, if 

a b , then ( ) ( )f a f b . 

1.1.A.4 – A function is decreasing over an interval of its domain if, as the input values 

increase, the output values always decrease. That is, for all a and b in the interval, if 

a b , then ( ) ( )f a f b . 

1.1.B – Construct a graph representing two quantities that vary with respect to each other in a 

contextual scenario. 

1.1.B.1 – The graph of a function displays a set of input-output pairs and shows how the 

values of the functions input and output values vary. 

1.1.B.2 – A verbal description of the way aspects of phenomena change together can be 

the basis for constructing a graph. 

1.1.B.3 – The graph of a function is concave up on intervals in which the rate of change 

is increasing. 

1.1.B.4 – The graph of a function is concave down on intervals in which the rate of 

change is decreasing. 

1.1.B.5 – The graph intersects the x-axis when the output value is zero. The 

corresponding input values are said to be zeros of the function. 

1.2 – Rates of Change (2 class periods) 

1.2.A – Compare the rates of change at two points using average rates of change near the 

points. 

1.2.A.1 – The average rate of change of a function over an interval of the function’s 

domain is the constant rate of change that yields the same change in the output values 

as the function yielded on the interval of the function’s domain. It is the ratio of the 

change in the output values to the change in the input values over that interval. 

1.2.A.2 – The rates of change of a function at a point quantifies the rate at which output 

values would change were the input values to change at that point. The rates of change 



at a point can be approximated by the average rates of change of the function over 

small intervals containing the point, if such values exist. 

1.2.A.3 – The rates of change at two points can be compared using average rate of 

change approximations over sufficiently small intervals containing each point, if such 

values exist. 

1.2.B – Describe how two quantities vary together at different points and over different intervals 

of a function. 

  1.2.B.1 – Rates of change quantify how two quantities vary together. 

1.2.B.2 – A positive rate of change indicates that as one quantity increases or decreases, 

the other quantity does the same. 

1.2.B.3 – A negative rate of change indicates that as one quantity increases, the other 

decreases. 

1.3 – Rates of Change in Linear and Quadratic Functions (2 class periods) 

1.3.A – Determine the average rates of change for sequences and functions, including linear, 

and other function types. 

1.3.A.1 – For a linear function, the average rate of change over any length input-value is 

constant. 

1.3.A.2 – For a quadratic function, the average rates of change over consecutive equal-

length input-value intervals can be given by a linear function. 

1.3.A.3 – The average rate of change over the closed interval [a, b] is the slope of the 

secant line from the point ( )( ),a f a to ( )( ),b f b . 

1.3.B – Determine the change in the average rates of change for linear, quadratic, and other 

function types. 

1.3.B.1 – For a linear function, since the average rates of change over consecutive equal-

length input-values can be given by a constant function, these average rates of change 

for a linear function are changing at a rate of zero. 

1.3.B.2 – For a quadratic function, since the average rates of change over consecutive 

equal-length input-value intervals can be given by a linear function, these average rates 

of change for a quadratic function are changing at a constant rate. 

1.3.B.3 – When the average rate of change over equal-length input-value intervals is 

increasing for all small-length intervals, the graph of the function is concave up. When 

the average rate of change over equal-length input-value intervals is decreasing for all 

small-length intervals, the graph of the function is concave down. 

1.4 – Polynomial Functions and Rates of Change (2 class periods) 

 1.4.A – Identify key characteristics of polynomial functions related to rates of change.  



1.4.A.1 – A nonconstant polynomial function of x is any function representation that is 

equivalent to the analytical form 

( ) 1 2 2

1 2 2 1 0

n n n

n n np x a x a x a x a x a x a− −

− −= + + + + + + , where n is a positive integer, 

ia is a real number for each I from 1 to n, and 
na  is nonzero. The polynomial has degree 

n, the leading term is n

na x , and the leading coefficient is 
na . A constant is also a 

polynomial function of degree zero. 

1.4.A.2 – Where a polynomial function switches between increasing and decreasing, or 

at the included endpoint of a polynomial with a restricted domain, the polynomial 

function will have a local, or relative, maximum or minimum output value. Of all local 

maxima, the greatest is called the global, or absolute, maximum. Likewise, the least of 

all local minima is called the global, or absolute, minimum. 

1.4.A.3 – Between every two distinct real zeros of a nonconstant polynomial function, 

there must be at least one input value corresponding to a local maximum or local 

minimum. 

1.4.A.4 – Polynomial function of an even degree will have either a global maximum or a 

global minimum. 

1.4.A.5 – Points of inflection of a polynomial function occur at input values where the 

rate of change of the function changes from increasing to decreasing or from decreasing 

to increasing. This occurs where the graph of a polynomial function changes from 

concave up to concave down, or from concave down to concave up. 

1.5 – Polynomial Functions and Complex Zeros (2 – 3 class periods) 

1.5.A – Identify key characteristics of a polynomial function related to its zeros when suitable 

factorizations are available or with technology. 

1.5.A.1 – If a is a complex number and ( ) 0p a = , then a is called a zero of the 

polynomial function p, or root of ( ) 0p x = . If a is a real number, then ( )x a− is a linear 

factor of p if and only if a is a zero of p. 

1.5.A.2 – If a linear factor ( )x a− is repeated n times, the corresponding zero of the 

polynomial function has a multiplicity n. A polynomial function of degree n has exactly n 

complex zeros when counting multiplicities. 

1.5.A.3 – If a is a real zero of a polynomial function p, then the graph of ( )y p x= has 

an x-intercept at the point ( ),0a . Consequently, real zeros of a polynomial can be 

endpoints for intervals satisfying polynomial inequalities. 

  1.5.A.4 – If a bi+ is a non-real zero of a polynomial function p, then its conjugate a bi−  

  is also a zero of p. 



1.5.A.5 – If the real zero, a, of a polynomial function has even multiplicity, then the signs 

of the output values are the same for input values near x a= . For these polynomial 

functions, the graph will be tangent to the x-axis at x a= . 

1.5.A.6 – The degree of a polynomial function can be found by examining the successive 

differences of the output values over equal-interval input values. The degree of the 

polynomial function is equal to the least value n for which the successive nth differences 

are constant. 

 1.5.B – Determine if a polynomial function is even or odd. 

1.5.B.1 – An even function is graphically symmetric over the line 0x = and analytically 

has the property ( ) ( )f x f x− = . If n is even, then the polynomial of the form 

( ) n

np x a x= , where 1n  and 0na  , is an even function. 

1.5.B.2 – An off function is graphically symmetric about the point ( )0, 0 and analytically 

has the property ( ) ( )f x f x− = − . If n is odd, then the polynomial of the form 

( ) n

np x a x= , where 1n  and 0na  , is an odd function. 

 

1.6 – Polynomial Functions and End Behavior (1 – 2 class periods) 

 1.6.A – Describe end behaviors of polynomial functions. 

1.6.A.1 – As input values of a nonconstant polynomial function increase without bound, 

the output values will either increase, or decrease without bound. The corresponding 

mathematical notation is ( )
lim

p x
x

= 
→

or ( )
lim

p x
x

= −
→

. 

1.6.A.2 – As input values of a nonconstant polynomial function decrease without bound, 

the output values will either increase or decrease without bound. The corresponding 

mathematical notation is ( )
lim

p x
x

= 
→

or ( )
lim

p x
x

= −
→

. 

1.6.A.3 – The degree and sign of the leading term of a polynomial determines the end 

behavior of the polynomial function, because as the input values increase or decrease 

without bound, the values of the leading term dominate the values of all lower-degree 

terms. 

1.7 – Rational Functions and End Behavior (2 – 3 class periods) 

 1.7.A – Describe end behaviors of rational functions. 

1.7.A.1 – A rational function is analytically represented as a quotient of two polynomial 

functions and gives a measure of the relative size of the polynomial function in the 



numerator compared to the polynomial function in the denominator for each value in 

the rational function’s domain. 

1.7.A.2 – The end behavior of a rational function will be affected most by the polynomial 

with the greater degree, as its value will dominate the values of the rational function for 

input values of large magnitude. For input values of large magnitude, a polynomial is 

dominated by its leading term. Therefore, the end behavior of a rational function can be 

understood by examining the corresponding quotient of the leading terms. 

1.7.A.3 – If the polynomial in the numerator dominates the polynomial in the 

denominator for input values of large magnitude, then the quotient of the leading terms 

is a nonconstant polynomial and the original rational function has the end behavior of 

that polynomial. If that polynomial is linear, then the graph of the rational function has a 

slant asymptote parallel to the graph of the line. 

1.7.A.4 – If neither polynomial in a rational function dominates the other for input 

values of large magnitude, then the quotient of the leading terms is a constant, and that 

constant indicates the location of a horizontal asymptote of the graph of the original 

rational function. 

1.7.A.5 – If the polynomial in the denominator dominates the polynomial in the 

numerator for input values of large magnitude, then the quotient of the leading terms is 

a ration function with a constant in the numerator and nonconstant polynomial in the 

denominator, and the graph of the original rational function has a horizontal asymptote 

at 0y = . 

1.7.A.6 – When the graph of a rational function r has a horizontal asymptote at y b= , 

where b is a constant, the output values of the rational function get arbitrarily close to b 

and stay arbitrarily close to b as input values increase or decrease without bound. The 

corresponding mathematical notation is ( )
lim

r x b
x

=
→

or ( )
lim

r x b
x

=
→ −

. 

1.8 – Rational Functions and Zeros (1 – 2 class periods) 

 1.8.A – Determine the zeros of rational functions. 

1.8.A.1 – The real zeros of a rational function correspond to the real zeros of the 

numerator for such values in its domain. 

1.8.A.2 – The real zeros of both polynomial function of a rational function r are 

endpoints or asymptotes for intervals satisfying the rational function inequalities 

( ) 0r x  or ( ) 0r x  . 

1.9 – Rational Functions and Vertical Asymptotes (1 – 2 class periods) 

 1.9.A – Determine vertical asymptotes of graphs of rational functions. 



1.9.A.1 – If the value a is a real zero of the polynomial function in the denominator of a 

rational function and is not also a real zero of the polynomial function in the numerator, 

then the graph of the rational function has a vertical asymptote at x a= . Furthermore, 

a vertical asymptote also occurs at x a= if the multiplicity of a as a real zero in the 

denominator is greater than its multiplicity as a real zero in the numerator. 

1.9.A.2 – Near a vertical asymptote, x a= , of a rational function, the values of the 

polynomial function in the denominator are arbitrarily close to zero, so the values of the 

rational function r increase or decrease without bound. The corresponding 

mathematical notation is ( )
lim

r x
x a+

= 
→

or ( )
lim

r x
x a+

= −
→

 for input values near 

a and greater than a, and ( )
lim

r x
x a−

= 
→

or ( )
lim

r x
x a−

= −
→

for input values near 

a and less than a. 

1.10 – Rational Functions and Holes (1 – 2 class periods) 

 1.10.A – Determine holes in graphs of rational functions. 

1.10.A.1 – If the multiplicity of a real zero in the numerator is greater than or equal to its 

multiplicity in the denominator, then the graph of the rational function has a hole at the 

corresponding input value. 

1.10.A.2 – If the graph of a rational function r has a hole at x c= , then the location of 

the hole can be determined by examining the output values corresponding to input 

values sufficiently close to c. If input values sufficiently close to c correspond to output 

values arbitrarily clos to L, then the hole is located at the point with coordinates ( ),c L . 

The corresponding mathematical notation is ( )
lim

r x L
x c

=
→

. It should be noted that 

( ) ( ) ( )
lim lim lim

r x r x r x L
x c x c x c− +

= = =
→ → →

. 

 

 

 

1.11 – Equivalent Representations of Polynomial and Rational Expressions (2 – 3 class periods) 

 1.11.A – Rewrite polynomial and rational expressions in equivalent forms. 

1.11.A.1 – Because the factored form of a polynomial or rational function readily 

provides information about real zeros, it can reveal information about x-intercepts, 

asymptotes, holes, domain, and range. 



1.11.A.2 – The standard form of a polynomial or rational function can reveal information 

about end behaviors of the function. 

1.11.A.3 – The information extracted from different analytic representations of the 

same polynomial or rational function can be used to answer questions in context. 

 1.11.B – Determine the quotient of two polynomial functions using long division. 

1.11.B.1 – Polynomial long division is an algebraic process similar to numerical long 

division involving a quotient and remainder. If the polynomial f is divided by the 

polynomial g, then f can be rewritten as ( ) ( ) ( ) ( )f x g x q x r x= + , where q is the 

quotient, r is the remainder, and the degree of r is less than the degree of g. 

1.11.B.2 – The result of polynomial long division is helpful in finding equations of slant 

asymptotes for graphs of rational functions. 

 1.11.C – Rewrite the repeated product of binomials using the binomial theorem. 

1.11.C.1 – The binomial theorem utilizes the entries in a single row of Pascal’s Triangle 

to more easily expand expressions of the form ( )
n

a b+ , including polynomial functions 

of the form ( ) ( )
n

p x x c= + , where c is a constant. 

1.12 – Transformations of Functions (2 – 3 class periods) 

1.12.A – Construct a function that is an additive and/or multiplicative transformation of another 

function. 

1.12.A.1 – The function ( ) ( )g x f x k= + is an additive transformation of the function f 

that results in a vertical translation of the graph of f by k units. 

1.12.A.2 – The function ( ) ( )g x f x h= + is an additive transformation of the function f 

that results in a horizontal translation of the graph of f by -h units. 

1.12.A.3 – The function ( ) ( )g x af x= , where 0a  , is a multiplicative transformation 

of the function f that results in a vertical dilation of the graph of f by a factor of a . If 

0a  , the transformation involves a reflection over the x-axis. 

1.12.A.4 – The function ( ) ( )g x f bx= , where 0b  , is a multiplicative transformation 

of the function f that results in a horizontal dilation of the graph of f by a factor of 
1

b
. If 

0b  , the transformation involves a reflection over the y-axis. 

1.12.A.5 – Additive and multiplicative transformations can be combined, resulting in 

combinations of horizontal and vertical translations and dilations. 



1.12.A.6 – The domain and range of a function that is a transformation of a parent 

function may be different from those of the parent function. 

 

 

1.13 – Function Model Selection and Assumption Articulation (2 – 3 class periods) 

 1.13.A – Identify an appropriate function type to construct a function model for a given 

scenario. 

1.13.A.1 – Linear functions model data sets or aspects of contextual scenarios that 

demonstrate roughly constant rates of change. 

1.13.A.2 – Quadratic functions model data sets or aspects of contextual scenarios that 

demonstrate roughly linear rates of change, or data sets that are roughly symmetric 

with a unique maximum or minimum value. 

1.13.A.3 – Geometric contexts involving area or two dimensions can often be modeled 

by quadratic functions. Geometric contexts involving volume or three dimensions can 

often be modeled by cubic functions. 

1.13.A.4 – Polynomial functions model data sets or contextual scenarios with multiple 

real zeros or multiple maxima or minima. 

1.13.A.5 – A polynomial function of degree n models data sets or contextual scenarios 

that demonstrate roughly constant nonzero nth differences. 

1.13.A.6 – A polynomial function of degree n or less can be used to model a graph of 

1n+ points with distinct input values. 

1.13.A.7 – A piecewise-defined function consists of a set of functions defined over 

nonoverlapping domain intervals and is useful for modeling a data set or contextual 

scenario that demonstrates different characteristics over different intervals. 

 1.13.B – Describe assumptions and restrictions related to building a function model. 

1.13.B.1 – A model may have underlying assumptions about what is consistent in the 

model. 

1.13.B.2 – A model may have underlying assumptions about how quantities change 

together. 

1.13.B.3 – A model may require domain restrictions based on mathematical clues, 

contextual clues, or extreme values in the data set. 

1.13.B.4 – A model may require range restrictions, such as rounding values, based on 

mathematical clues, contextual clues, or extreme values in the data set. 

1.14 – Function Model Construction and Application (2 – 3 class periods) 



1.14.A – Construct a linear, quadratic, cubic, quartic, polynomial of degree n, or related  

piecewise-defined function model. 

1.14.A.1 – A model can be constructed based on restrictions identified in a 

mathematical or contextual scenario. 

1.14.A.2 – A model of a data set or a contextual scenario can be constructed using 

transformations of the parent function. 

1.14.A.3 – A model of a data set can be constructed using technology and regressions, 

including linear, quadratic, cubic, and quartic regressions. 

1.14.A.4 – A piecewise-defined function model can be constructed through a 

combination of modeling techniques. 

 1.14.B – Construct a rational function model based on a context. 

1.14.B.1 – Data sets and aspects of contextual scenarios involving quantities that are 

inversely proportional can often be modeled by rational functions. For example, the 

magnitude of both gravitational force and electromagnetic force between objects are 

inversely proportional to the object’s squared distance. 

 1.14.C – Apply a function model to answer questions about a data set or contextual scenario. 

1.14.C.1 – A model can be used to draw conclusions about the modeled data set or 

contextual scenario, including answering key questions and predicting values, rates of 

change, average rates of change, and changing rates of change. Appropriate units of 

measure should be extracted or inferred from the given context. 

 

 

Unit 2 – Exponential and Logarithmic Functions (27 – 40% of exam) (30 – 45 class periods) 

 

2.1 – Change in Arithmetic and Geometric Sequences (2 class periods) 

2.1.A – Express arithmetic sequences found in mathematical and contextual scenarios as 

functions of the whole numbers. 

2.1.A.1 – A sequence is a function from the whole numbers to the real numbers. 

Consequently, the graph of a sequence consists of discrete points instead of a curve. 

2.1.A.2 – Successive terms in an arithmetic sequence have a common difference, or 

constant rate of change. 



2.1.A.3 – The general term of an arithmetic sequence with a common difference d is 

denoted by 
na and is given by 

0na a dn= + , where 
0a is the initial value, or by 

( )n ka a d n k= + − , where 
ka is the kth term of the sequence. 

2.1.B – Express geometric sequences found in mathematical and contextual scenarios as 

functions of the whole numbers. 

2.1.B.1 – Successive terms in a geometric sequence have a common ratio, or constant 

proportional change. 

2.1.B.2 – The general term of a geometric sequence with a common ratio r is denoted by 

ng  and is given by 
0

n

ng g r= , where 
0g is the initial value, or by 

( )n k

n kg g r
−

= , where 

kg  is the kth term of the sequence. 

2.1.B.3 – Increasing arithmetic sequences increase equally with each step, whereas 

increasing geometric sequences increase by a larger amount with each successive step. 

2.2 – Change in Linear and Exponential Functions (2 class periods) 

2.2.A – Construct functions of the real numbers that are comparable to arithmetic and 

geometric sequences. 

2.2.A.1 – Linear functions of the form ( )f x b mx= + are similar to arithmetic 

sequences of the form 
0na a dn= + as both can be expressed as an initial value (b or

0a ) 

plus repeated addition of a constant rate of change, the slope (m or d). 

2.2.A.2 – Similar to arithmetic sequences of the form ( )n ka a d n k= + − , which are 

based on a known difference, d, and a kth term, linear functions can be expressed in the 

form ( ) ( )i if x y m x x= + − based on a know slope, m, and a point ( ),i ix y . 

2.2.A.3 – Exponential functions of the form ( ) xf x ab=  are similar to geometric 

sequences of the form 0

n

ng g r= , as both can be expressed as an initial value (a or
0g ) 

times repeated multiplication by a constant proportion (b or r). 

2.2.A.4 – Similar to geometric sequences of the form 
( )n k

n kg g r
−

= , which are based on 

a known ratio, r, and a kth term, exponential functions can be expressed in the form 

( ) ( )1x x

if x y r
−

=  based on a known ratio, r, and a point ( ),i ix y . 

  2.2.A.5 – Sequences and their corresponding functions may have different domains. 

 2.2.B – Describe similarities and differences between linear and exponential functions.  

2.2.B.1 – Over equal-length input-value intervals, if the output values of a function 

change at a constant rate, then the function is linear; if the output values of a function 

change proportionally then the function is exponential. 



2.2.B.2 – Linear functions of the form ( )f x b mx= + and exponential functions of the 

form ( ) xf x ab= can both be expressed analytically in terms of an initial value and a 

constant involved with change. However, linear functions are based on addition, while 

exponential functions are based on multiplication. 

2.2.B.3 – Arithmetic sequences, linear functions, geometric sequences, and exponential 

functions all have the property that they can be determined by two distinct sequence or 

function values. 

2.3 – Exponential Functions (1 – 2 class periods) 

 2.3.A – Identify key characteristics of exponential functions. 

2.3.A.1 – The general form of an exponential function is ( ) xf x ab= , with initial value 

a, where 0a  , and base b, where 0b  , and 1b  . When 0a  and 1b  , the 

exponential function is said to demonstrate exponential growth. When 0a  and 

0 1b  , the exponential function is said to demonstrate exponential decay. 

2.3.A.2 – When the natural numbers are input values in an exponential function, the 

input value specifies the number of factors of the base to be applied to the function’s 

initial value. The domain of an exponential function is all real numbers. 

2.3.A.3 – Because the output values of exponential functions in general form are 

proportional over equal-length input-value intervals, exponential functions are always 

increasing or always decreasing, and their graphs are always concave up or always 

concave down. Consequently, exponential functions do not have extrema except on a 

closed interval, and their graphs do not have points of inflection. 

2.3.A.4 – If the values of the additive transformation function ( ) ( )g x f x k= + of any 

function f are proportional over equal-length input-value intervals, then f is exponential. 

2.3.A.5 – For an exponential function in general form, as the input values increase or 

decrease without bound the output values will increase or decrease without bound or 

will get arbitrarily close to zero. That is, for an exponential function in general form, 

lim
xab

x
= 

→ 
, 

lim
xab

x
= −

→ 
, or 

lim
0xab

x
=

→ 
. 

2.4 – Exponential Function Manipulation (2 class periods) 

 2.4.A – Rewrite exponential expressions in equivalent forms. 

2.4.A.1 – The product property for exponents states that 
( )m nm nb b b

+
= . Graphically, this 

property implies that every horizontal translation of an exponential function, 

( ) ( )x k
f x b

+
= , is equivalent to a vertical dilation, ( ) ( )x k x k xf x b b b ab

+
= = = , where 

ka b=  



2.4.A.2 – The power property for exponents states that ( ) ( )n mnmb b= . Graphically, this 

property implies that every horizontal dilation of an exponential function, ( ) ( )cx
f x b= , 

is equivalent to a change of base of an exponential function, ( ) ( )
x

cf x b= , where cb is 

a constant and 0c  . 

  2.4.A.3 – The negative exponent property states that 
1n

n
b

b

− = . 

  2.4.A.4 – The value of an exponential expression involving an exponential unit fraction,  

such as 
( )1/k

b where k is a natural number, is the kth root of b, when it exists. 

2.5 – Exponential Function Context and Data Modeling (2 – 3 class periods) 

2.5.A – Construct a model for situations involving proportional output values over equal-length 

input-value intervals. 

2.5.A.1 – Exponential functions model growth patterns where successive output values 

over equal-length input-value intervals are proportional. When the input values are 

whole numbers, exponential functions model situations of repeated multiplication of a 

constant to an initial value. 

2.5.A.2 – A constant may need to be added to the dependent variable values of a data 

set to reveal a proportional growth pattern. 

2.5.A.3 – An exponential function model can be constructed from an appropriate ratio 

and initial value or from two input-output pairs. The initial and the base can be found by 

solving a system of equations resulting from the two input-output pairs. 

2.5.A.4 – Exponential function models can be constructed by applying transformations 

to ( ) xf x ab= based on characteristics of a contextual scenario or data set. 

2.5.A.5 – The natural base e, which is approximately 2.718, is often used as the base in 

exponential functions that model contextual scenarios. 

 2.5.B – Apply exponential models to answer questions about a data set or contextual scenario. 

2.5.B.1 – For an exponential model in general form ( ) xf x ab= , the base of the 

exponent, b, can be understood as a growth factor in successive unit changes in the 

input values and is related to a percent change in context. 

2.5.B.2 – Equivalent forms of an exponential function can reveal different properties of 

the function. For example, if d represents number of days then the base of ( ) 2df d =

indicates that the quantity increases by a factor of 2 every day, but the equivalent form 

( ) ( )
( )/7

72
d

f d = indicates that the quantity increases by a factor of 72 every week. 



2.5.B.3 – Exponential models can be used to predict values for the dependent variable, 

depending on the contextual constraints on the domain. 

2.6 – Competing Function Model Validation (2 – 3 class periods) 

 2.6.A – Construct linear, quadratic, and exponential models based on a data set. 

2.6.A.1 – Two variables in a data set that demonstrate a slightly changing rate can be 

modeled by linear, quadratic, and exponential function models. 

2.6.A.2 – Models can be compared based on contextual clues and applicability to 

determine which model is most appropriate. 

 2.6.B – Validate a model constructed from a data set. 

2.6.B.1 – A model is justified as appropriate for a data set if the graph of the residuals of 

a regression, the residual plot, appear without pattern. 

2.6.B.2 – The difference between the predicted and actual values is the error int eh 

model. Depending on the data set and context, it may be more appropriate to have an 

underestimate or overestimate for any given interval. 

2.7 – Composition of Functions (2 – 3 class periods) 

 2.7.A – Evaluate the composition of two or more functions for given values. 

2.7.A.1 – If f and g are functions, the composite function f g maps a set of input 

values to a set of output values such that the output values of g are used as input values 

of f. For this reason, the domain of the composite function is restricted to those input 

values of g for which the corresponding output value is in the domain of f. ( ) ( )f g x

can also be represented as ( )( )f g x . 

2.7.A.2 – Values for the composite function f g can be calculated or estimated from 

the graphical, numerical, analytical, or verbal representations of f and g by using output 

values from g as input values for f. 

2.7.A.3 – The composition of functions is not commutative: that is, f g  and g f are 

typically different functions: therefore, ( )( )f g x and ( )( )g f x are typically different 

values. 

2.7.A.4 – If the function ( )f x x= is composed with any function g, the resulting 

composite function is the same as g: that is ( )( ) ( )( ) ( )g f x f g x g x= = . The function 

( )f x x=  is called the identity function. When composing two functions, the identity 

function acts in the same way as 0, the additive identity, when adding two numbers and 

I, the multiplicative identity, when multiplying two numbers. 

  2.7.B – Construct a representation of the composition of two or more functions. 



2.7.B.1 – Function composition is useful for relating two quantities that are not directly 

related by an existing formula. 

2.7.B.2 – When analytic representations of the functions f and g are available, an 

analytic representation of ( )( )f g x can be constructed by substituting ( )g x for every 

instance of x in f. 

2.7.B.3 – A numerical or graphical representation of f g can often be constructed by 

calculating or estimating values for ( )( )( ),x f g x . 

 2.7.C – Rewrite a given function as a composition of two or more functions.  

2.7.C.1 – Functions given analytically can often be decomposed into less complicated 

functions. When properly decomposed, the variable in one function should replace each 

instance of the function with which it was composed. 

2.7.C.2 – An additive transformation of a function, f, that results in vertical and 

horizontal translations can be understood as the composition of ( )g x x k= + with f. 

2.7.C.3 – A multiplicative transformation of a function, f, that results in vertical and 

horizontal dilations can be understood as the composition of ( )g x kx= with f. 

2.8 – Inverse Functions (2 – 3 class periods) 

 2.8.A – Determine the input-output pairs of the inverse of a function. 

2.8.A.1 – On a specified domain, a function, f, has an inverse function, or is invertible, if 

each output value of f is mapped from a unique input value. The domain of a function 

may be restricted in many ways to make the function invertible. 

2.8.A.2 – An inverse function can be thought of as a reverse mapping of the function. An 

inverse function, 1f − , maps the output values of a function, f, on its invertible domain 

to their corresponding input values; that is, if ( )f a b= , then ( )1f b a− = . Alternately, 

on its invertible domain, if a function consists of input-output pairs ( ),a b , then the 

inverse function consists of input-output pairs ( ),b a . 

 2.8.B – Determine the inverse of a function on an invertible domain. 

2.8.B.1 – The composition of a function, f, and its inverse function, 1f − , is the identity 

function; that is, ( )( ) ( )( )1 1f f x f f x x− −= = . 

2.8.B.2 – On a function’s invertible domain, the function’s range and domain are the 

inverse function’s domain and range, respectively. The inverse of the table of values of 



( )y f x= can be found by reversing the input-output pairs; that is, ( ),a b corresponds 

to ( ),b a . 

2.8.B.3 – The inverse of the graph of the function ( )y f x= can be found by reversing 

the roles of the x- and y-axes; that is, by reflecting the graph of the function over the 

graph of the identity function ( )h x x= . 

2.8.B.4 – The inverse of the function can be found by determining the inverse 

operations to reverse the mapping. One method for finding the inverse of the function f 

is reversing the roles of x and y in the equation ( )y f x= , then solving for ( )1y f x−= . 

2.8.B.5 – In addition to limiting the domain of a function to obtain an inverse function, 

contextual restrictions may also limit the applicability of an inverse function. 

2.9 – Logarithmic Expressions (1 – 2 class periods) 

 2.9.A – Evaluate Logarithmic expressions. 

2.9.A.1 – The logarithmic expression logb c is equal to, or represents, the value that the 

base b must be exponentially raised to in order to obtain the value c. That is , logb c a=

if and only if ab c= , where a and c are constants, 0b  , and 1b  , (when the base of a 

logarithmic expression is not specified, it is understood as the common logarithm with a 

base of 10). 

2.9.A.2 – The values of some logarithmic expressions are readily accessible through 

basic arithmetic while other values can be estimated through the use of technology. 

2.9.A.3 – On a logarithmic scale, each unit represents a multiplicative change of the base 

of eth logarithm. For example, on a standard scale, the units might be 0, 1, 2, . . ., while 

on a logarithmic scale, using logarithm base 10, the units might be 0 1 210 ,10 ,10 , . 

2.10 – Inverses of Exponential Functions (2 class periods) 

2.10.A – Construct representations of the inverse of an exponential function with an initial value 

of 1. 

2.10.A.1 – The general form of a logarithmic function is ( ) logbf x a x= , with base b, 

where 0, 1b b  and 0a  . 

2.10.A.2 – The way in which input and output values vary together have an inverse 

relationship in exponential and logarithmic functions. Output values of general-form 

exponential functions change proportionally as input values increase in equal-length 

intervals. However, input values of general-form logarithmic functions change 

proportionately as output values increase in equal-length intervals. Alternately, 

exponential growth is characterized by output values changing multiplicatively as input 



values change additively, whereas logarithmic growth is characterized by output values 

changing additively as input values change multiplicatively. 

2.10.A.3 - ( ) logbf x x= and ( ) xg x b= , where 0b  and 1b  , are inverse functions. 

That is ( )( ) ( )( )g f x f g x x= =  

2.10.A.4 – The graph of the logarithmic function ( ) logbf x x= , where 0b  and 1b 

, is a reflection of the graph of the exponential function ( ) xg x b= , where 0b  and 

1b  , over the graph of the identity function ( )h x x= . 

2.10.A.5 – If ( ),s t is an ordered pair of the exponential function ( ) xg x b= , where 

0b  and 1b  , then ( ),t s is an ordered pair of the logarithmic function 

( ) logbf x x= , where 0b  and 1b  . 

2.11 – Logarithmic Functions (1 – 2 class periods) 

 2.11.A – Identify key characteristics of logarithmic functions.  

2.11.A.1 – The domain of a logarithmic function in general form is any real number 

greater than zero, and its range is all real numbers. 

2.11.A.2 – Because logarithmic functions are inverses of exponential functions, 

logarithmic functions are also always increasing or always decreasing, and their graphs 

are either always concave up or always concave down. Consequently, logarithmic 

functions do not have extrema except on a closed interval, and their graphs do not have 

points of inflection. 

2.11.A.3 – The additive transformation function ( ) ( )g x f x k= + , where 0k  , of a 

logarithmic function f in general form does not have input values that are proportional 

over equal-length output-value intervals. However, if the input values of the additive 

transformation function, ( ) ( )g x f x k= + , of any function f are proportional over 

equal-length output value intervals, then f is logarithmic. 

2.11.A.4 – With their limited domain, logarithmic functions in general form are vertically 

asymptotic to 0x = , with an end behavior that is unbounded. That is, for a logarithmic 

function in general form, 
lim

log
0

ba x
x +

= 
→

and 
lim

logba x
x

= 
→

. 

2.12 – Logarithmic Function Manipulation (2 – 3 class periods) 

 2.12.A – Rewrite logarithmic expressions in equivalent forms. 

2.12.A.1 – The product property for logarithms states that ( )log log logb b bxy x y= + . 

Graphically, this property implies that every horizontal dilation of a logarithmic function 



( ) ( )logbf x kx= , is equivalent to a vertical translation, 

( ) ( )log log log logb b b bf x kx k x a x= = + = + , where logba k= . 

2.12.A.2 – The power property for logarithms states that log logn

b bx n x= . 

Graphically, this property implies that raising the input of a logarithmic function to a 

power, ( ) log k

bf x x= , results in a vertical dilation, ( ) log logk

b bf x x k x= = . 

2.12.A.3 – The change of base property for logarithms states that 
log

log
log

a
b

a

x
x

b
= , 

where 0a  and 1a  . This implies that all logarithmic functions are vertical dilations 

of each other. 

2.12.A.4 – The function ( ) lnf x x= is a logarithmic function with the natural base e; 

that is ln logex x= . 

2.13 – Exponential and Logarithmic Equations and Inequalities (3 – 4 class periods) 

 2.13.A – Solve exponential and logarithmic equations and inequalities. 

2.13.A.1 – Properties of exponents, properties of logarithms, and the inverse 

relationship between exponential and logarithmic functions can be used to solve 

equations and inequalities involving exponents and logarithms. 

2.13.A.2 – When solving exponential and logarithmic equations found through analytical 

or graphical methods, the results should be examined for extraneous solutions 

precluded by the mathematical or contextual limitations. 

2.13.A.3 – Logarithms can be used to rewrite expressions involving exponential 

functions in different ways that may reveal helpful information. Specifically, 
( )( )logc b xxb c=  

 2.13.B – Construct the inverse function for exponential and logarithmic functions. 

2.13.B.1 – The function ( ) ( )x h
f x ab k

−
= + is a combination of additive transformations 

of an exponential function in general form. The inverse of ( )y f x= can be found by 

determining the inverse operations to reverse the mapping. 

2.13.B.2 – The function ( ) ( )logbf x a x h k= − +  is a combination of additive 

transformations of a logarithmic function in general form. The inverse of ( )y f x= can 

be found by determining the inverse operations to reverse the mapping. 

2.14 – Logarithmic Function Context and Data Modeling (2 – 3 class periods) 

 2.14.A – Construct a logarithmic function model. 



2.14.A.1 – Logarithmic functions are inverses of exponential functions and can be used 

to model situations involving proportional growth, or repeated multiplication, where 

the input values change proportionally over equal-length output-value intervals. 

Alternately, if the output value is a whole number, it indicates how many times the 

initial value has been multiplied by the proportion. 

2.14.A.2 – A logarithmic function model can be constructed from an appropriate 

proportion and a real zero or from two input-output pairs. 

2.14.A.3 – Logarithmic function models can be constructed by applying transformations 

to ( ) logbf x a x= based on characteristics of a context or data set. 

2.14.A.4 – Logarithmic function models can be constructed for a data set with 

technology using logarithmic regressions. 

2.14.A.5 – Logarithmic function models can be used to predict values for the dependent 

variable. 

2.15 – Semi-log Plots (2 – 3 class periods) 

2.15.A – Determine if an exponential model is appropriate by examining a semi-log plot of a data 

set. 

2.15.A.1 – In a semi-log plot, one of the axes is logarithmically scaled. When the y-axis of 

a semi-log plot is logarithmically scaled, data or functions that demonstrate exponential 

characteristics will appear linear. 

2.15.A.2 – An advantage of semi-log plots is that a constant never needs to be added to 

the dependent variable values to reveal that an exponential model is appropriate. 

 2.15.B – Construct the linearization of exponential data. 

  2.15.B.1 – Techniques used to model linear functions can be applied to a semi-log graph. 

  2.15.B.2 – For an exponential model of the form xy ab= , the corresponding linear  

model for the semi-log plot is ( )log logn ny b x a= + , where 0n  and 1n  . 

Specifically, the linear rate of change is logn b and the initial value is logn a . 

 

Unit 3 – Trigonometric and Polar Functions (30 – 35% of Exam) (35 – 50 class periods) 

 

3.1 – Periodic Phenomena (2 class periods) 

 3.1.A – Construct graphs of periodic relationships based on verbal representations. 



3.1.A.1 – A periodic relationship can be identified between two aspects of a context if, 

as the input values increase, the output values demonstrate a repeating pattern over 

successive equal-length intervals. 

3.1.A.2 – The graph of a periodic relationship can be constructed from the graph of a 

single cycle of the relationship. 

 3.1.B – Describe key characteristics of a periodic function based on a verbal representation. 

3.1.B.1 – The period of the function is the smallest positive value k such that 

( ) ( )f x k f x+ = for all x in the domain. Consequently, the behavior of a periodic 

function is completely determined by any interval of width k. 

3.1.B.2 – The period can be estimated by investigating successive equal-length output 

values and finding where the pattern begins to repeat. 

3.1.B.3 – Periodic functions take on characteristics of other functions, such as intervals 

of increase and decrease, different concavities, and various rates of change. However, 

with periodic functions, all characteristics found in one period of the function will be in 

every period of the function. 

3.2 – Sine, Cosine, and Tangent (2 – 3 class periods) 

 3.2.A – Determine the sine, cosine, and tangent of an angle using the unit circle. 

3.2.A.1 – In the coordinate plane, an angle is in standard position when the vertex 

coincides with the origin and one ray coincides with the positive x-axis. The other ray is 

called the terminal ray. Positive and negative angle measures indicate rotations from 

the positive x-axis in the counterclockwise and clockwise direction, respectively. Angles 

in standard position that share a terminal ray differ by an integer number of revolutions. 

3.2.A.2 – The radian measure of an angle in standard position is the ratio of the length 

of the arc of a circle centered at the origin subtended by the angle to the radius of the 

same circle. For a unit circle, which has radius 1, the radian measure is the same as the 

length of the subtended arc. 

3.2.A.3 – Given an angle in standard position and a circle centered at the origin, there is 

a point, P, where the terminal ray intersects the circle. The sine of the angle is the ratio 

of the vertical displacement of P from the x-axis to the distance between the origin and 

point P. Therefore, for a unit circle, the sine of the angle is the y-coordinate of point P. 

3.2.A.4 – Given an angle in standard position and a circle centered at the origin, there is 

a point, P, where the terminal ray intersects the circle. The cosine of the angle is the 

ratio of the horizontal displacement of P from the y-axis to the distance between the 

origin and point P. Therefore, for a unit circle, the cosine of the angle is the x-coordinate 

of point P. 

3.2.A.5 – Given an angle in standard position, the tangent of the angle is the slope, if it 

exists, of the terminal ray. Because the slope of the terminal ray is the ratio of the 



vertical displacement to the horizontal displacement over any interval, the tangent of 

the angle is the ratio of the y-coordinate to the x-coordinate of the point at which the 

terminal ray intersects the unit circle; alternately, it is the ratio of the angle’s sine to its 

cosine. 

3.3 – Sine and Cosine Function Values (2 – 3 class periods) 

 3.3.A – Determine coordinates of points on a circle centered at the origin. 

3.3.A.1 – Given an angle of measure   in standard position and a circle with radius r 

centered at the origin, there is a point, P, where the terminal ray intersects the circle. 

The coordinates of point P are ( )cos , sinr r  . 

3.3.A.2 – The geometry of isosceles right and equilateral triangles, while attending to 

the signs of the values based on the quadrant of the angle, can be used to find exact 

values for the cosine and sine of angles that are multiples of 
4


and 

6


radians and 

whose terminal rays do not lie on an axis. 

3.4 – Sine and Cosine Function Graphs (2 – 3 class periods) 

 3.4.A – Construct representations of the sine and cosine functions using the unit circle. 

3.4.A.1 – Given an angle of measure   in standard position and a unit circle centered at 

the origin, there is a point, P, where the terminal ray intersects the circle. The sine 

function, ( ) sinf  = , gives the y-coordinate, or vertical displacement from the x-axis, 

of point P. The domain of the sine function is all real numbers. 

3.4.A.2 – As the input values, or angle measures, of the sine function increase, the 

output values oscillate between –1 and 1, taking every value in between and tracking 

the vertical distance of points on the unit circle from the x-axis. 

3.4.A.3 – Given an angle of measure   in standard position and a unit circle centered at 

the origin, there is a point, P, where the terminal ray intersects the circle. The cosine 

function ( ) cosf  = , gives the x-coordinate, or horizontal displacement from the y-

axis, of point P. The domain of the cosine function is all real numbers. 

3.4.A.4 – As the input values, or angle measures, of the cosine function increase, the 

output values oscillate between –1 and 1, taking every value in between and tracking 

the horizontal distance of points on the unit circle from the y-axis. 

3.5 – Sinusoidal Functions (2 – 3 class periods) 

 3.5.A – Identify key characteristics of the sine and cosine functions. 



3.5.A.1 – A sinusoidal function is any function that involves additive and multiplicative 

transformation of ( ) sinf  = . The sine and cosine functions are both sinusoidal 

functions, with cos sin
2


 

 
= + 

 
. 

3.5.A.2 – The period and frequency of a sinusoidal function are reciprocals. The period 

of ( ) sinf  = and ( ) cosg  = is 2 and the frequency is 
1

2
. 

3.5.A.3 – The amplitude of a sinusoidal function is half the difference between its 

maximum and minimum values. The amplitude of ( ) sinf  = and ( ) cosg  = is 1. 

3.5.A.4 – The midline of the graph of a sinusoidal function is determined by the average, 

or arithmetic mean, of the maximum and minimum values of the function. The midline 

of the graphs of siny = and cosy = is 0y = . 

3.5.A.5 – As input values increase, the graphs of sinusoidal functions oscillate between 

concave down and concave up. 

3.5.A.6 – The graph of siny = has rotational symmetry about the origin and is 

therefore an odd function. The graph of cosy = has reflective symmetry over the y-

axis and is therefore an even function. 

3.6 – Sinusoidal Function Transformations (2 – 3 class periods) 

 3.6.A – Identify the amplitude, vertical shift, period, and phase shift of a sinusoidal function. 

3.6.A.1 – Functions that can be written in the form ( ) ( )( )sinf a b c d = + + or 

( ) ( )( )cosg a b c d = + + , where a, b, c, and d are real numbers and 0a  , are 

sinusoidal functions and are transformations of the sine and cosine functions. Additive 

and multiplicative transformations are the same for both sine and cosine because the 

cosine function is a phase shift of the sine function by 
2


− units. 

3.6.A.2 – The graph of the additive transformation ( ) sing d = + on the sine 

function ( ) sinf  = is a vertical translation of the graph of f, including its midline, by 

d units. The same transformation of the cosine function yields the same result. 

3.6.A.3 – The graph of the additive transformation ( ) ( )sing c = + of the sine 

function ( ) sinf  = is a horizontal translation, or phase shift, of the graph of f by c−

units. The same transformation of the cosine function yields the same result. 



3.6.A.4 – The graph of the multiplicative transformation ( ) sing a = of the sine 

function ( ) sinf  = is a vertical dilation of the graph of f and differs in amplitude by a 

factor of a . The same transformation of the cosine function yields the same result. 

3.6.A.5 – The graph of the multiplicative transformation ( ) ( )sing b = of the sine 

function ( ) sinf  = is a horizontal dilation of the graph of f and differs in period by a 

factor of 
1

b
. The same transformation of the cosine function yields the same result. 

3.6.A.6 – The graph of ( ) ( )( )siny f a b c d = = + + has an amplitude of a units, a 

period of 
1

2
b

 units, a midline vertical shift of d units from 0y = , and a phase shift of 

c− units. The same transformations of the cosine function yield the same results. 

3.7 – Sinusoidal Function Context and Data Modeling (2 – 3 class periods) 

 3.7.A – Construct sinusoidal function models of periodic phenomena. 

3.7.A.1 – The smallest interval of input values over which the maximum or minimum 

output values start to repeat, that is, the input-value interval between consecutive 

maxima or consecutive minima, can be used to determine or estimate the period and 

frequency for a sinusoidal function model. 

3.7.A.2 – The maximum and minimum output values can be used to determine or 

estimate the amplitude and vertical shift for a sinusoidal function model. 

3.7.A.3 – An actual pair of input-output values can be compared to pairs of input-output 

values produced by a sinusoidal function model to determine a phase shift for the 

model. 

3.7.A.4 – Sinusoidal function models can be constructed for a data set with technology 

by estimating key values or using sinusoidal regressions. 

3.7.A.5 – Sinusoidal functions that model a data set are frequently only useful over their 

contextual domain and can be used to predict values of the dependent variable from 

values of the independent variable. 

3.8 – The Tangent Function (2 class periods) 

 3.8.A – Construct representations of the tangent function using the unit circle. 

3.8.A.1 – Given an angle of measure   in standard position and a unit circle centered at 

the origin, there is a point, P, where the terminal ray intersects the circle. The tangent 

function, ( ) tanf  = , gives the slope of the terminal ray. 



3.8.A.2 – Because the slope of the terminal ray is the ratio of the change in the y-values 

to the change in the x-values between any two points on the rat, the tangent function is 

also the ratio of the sine function to the cosine function. Therefore, 
sin

tan
cos





= , 

where cos 0  . 

 3.8.B – Describe key characteristics of the tangent function. 

3.8.B.1 – Because the slope values of the terminal ray repeat every one-half revolution 

of the circle, the tangent function has a period of  . 

3.8.B.2 – The tangent function demonstrates periodic, asymptotic behavior at input 

values 
2

k


 = + , for integer values of k, because cos 0 = at those values. 

3.8.B.3 – The tangent function increases and its graph changes from concave down to 

concave up between consecutive asymptotes. 

 3.8.C – Describe additive and multiplicative transformations involving the tangent function. 

3.8.C.1 – The graph of the additive transformation ( ) tang d = + of the tangent 

function ( ) tanf  = is a vertical translation of the graph of f and the line containing 

its points of inflection by d units. 

3.8.C.2 – The graph of the additive transformation ( ) ( )tang c = + of the tangent 

function ( ) tanf  = is a horizontal translation, or phase shift, of the graph of f by c−

. 

3.8.C.3 – The graph of the multiplicative transformation ( ) tang a = of the tangent 

function ( ) tanf  = us a vertical dilation of the graph of f by a factor of a , if 0a  , 

the transformation involves a reflection over the x-axis. 

3.8.C.4 – The graph of the multiplicative transformation ( ) ( )tang b = of the tangent 

function ( ) tanf  = is a horizontal dilation of the graph of f and differs in period by a 

factor of 
1

b
. If 0b  , the transformation involves a reflection over the y-axis. 

3.8.C.5 – The graph of ( ) ( )( )tany f a b c d = = + + is a vertical dilation of the 

graph of tany = by a factor of a , has a period of 
1

b
  units, is a vertical shift of the 

line containing the points of inflection of the graph tany = by d units, and is a phase 

shift of c− units. 



3.9 – Inverse Trigonometric Functions (2 – 3 class periods) 

3.9.A – Construct analytical and graphical representations of the inverse of the sine, cosine, and 

tangent functions over a restricted domain. 

3.9.A.1 – For inverse trigonometric functions, the input and output values are switched 

from their corresponding trigonometric functions, so the output value of an inverse 

trigonometric function is often interpreted as an angle measure and the input is a value 

in the range of the corresponding trigonometric function. 

3.9.A.2 – The inverse trigonometric functions are called arcsine, arccosine, and 

arctangent (also represented as 1 1sin , cosx x− − , and 1tan x− ). Because the 

corresponding trigonometric functions are periodic, they are only invertible if they have 

restricted domains. 

3.9.A.3 – In order to define their respective inverse functions, the domain of the sine 

function is restricted to ,
2 2

  
− 
 

, the cosine function to  0,  , and the tangent 

function to ,
2 2

  
− 
 

. 

3.10 – Trigonometric Equations and Inequalities (3 – 4 class periods) 

 3.10.A – Solve equations and inequalities involving trigonometric functions. 

3.10.A.1 – Inverse trigonometric functions are useful in solving equations and 

inequalities involving trigonometric functions, but solutions may need to be modified 

due to domain restrictions. 

3.10.A.2 – Because trigonometric functions are periodic, there are often infinitely many 

solutions to trigonometric equations. 

3.10.A.3 – In trigonometric equations and inequalities arising from a contextual 

scenario, there is often a domain restriction that can be implied from the context, which 

limits the number of solutions. 

3.11 – The Secant, Cosecant, and Cotangent Functions (2 class periods) 

3.11.A – Identify key characteristics of functions that involve quotients of the sine and cosine 

functions. 

3.11.A.1 – The secant function, ( ) secf  = , is the reciprocal of the cosine function, 

where cos 0  . 

3.11.A.2 – The cosecant function, ( ) cscf  = , is the reciprocal of the sine function, 

where sin 0  . 



3.11.A.3 – The graphs of eh secant and cosecant functions have vertical asymptotes 

where cosine and sine are zero, respectively, and have a range of (   ), 1 1,− −   . 

3.11.A.4 – The cotangent function, ( ) cotf  = , is the reciprocal of the tangent 

function, where tan 0  . Equivalently, 
cos

cot
sin





= , where sin 0  . 

3.11.A.5 – The graph of the cotangent function has vertical asymptotes for domain 

values where tan 0 = and is decreasing between consecutive asymptotes. 

3.12 – Equivalent Representations of Trigonometric Functions (3 – 4 class periods) 

 3.12.A – Rewrite trigonometric expressions in equivalent forms with the Pythagorean identity. 

3.12.A.1 – The Pythagorean Theorem can be applied to right triangles with points on the 

unit circle at coordinates ( )cos sin  , resulting in the Pythagorean identity: 

2 2sin cos 1 + = . 

3.12.A.2 – The Pythagorean identity can be algebraically manipulated into other forms 

involving trigonometric functions, such as 2 2tan sec 1 = − , and can be used to 

establish other trigonometric relationships, such as ( )2arcsin arccos 1x x= − , with 

appropriate domain restrictions. 

3.12.B – Rewrite trigonometric expression in equivalent forms with sine and cosine sum 

identities. 

  3.12.B.1 – The sum identity for sine is ( )sin sin cos cos sin     + = + . 

  3.12.B.2 – The sum identity for cosine is ( )cos cos cos sin sin     + = − . 

  3.12.B.3 – The sum identities for sine and cosine can also be used as difference and  

double-angle identities. 

3.12.B.4 – Properties of trigonometric functions, known trigonometric identities, and 

other algebraic properties can be used to verify additional trigonometric identities. 

 3.12.C – Solve equations using equivalent analytic representations of trigonometric functions. 

3.12.C.1 – A specific equivalent form involving trigonometric expressions can make 

information more accessible. 

3.12.C.2 – Equivalent trigonometric forms may be useful in solving trigonometric 

equations and inequalities. 

3.13 – Trigonometric and Polar Coordinates (2 – 3 class periods) 



3.13.A – Determine the location of a point in the plane using both rectangular and polar 

coordinates. 

3.13.A.1 – The polar coordinate system is based on a grid of circles centered at the 

origin and on lines through the origin. Polar coordinates are defined as an ordered pair, 

( ),r  , such that r represents the radius of the circle on which the point lies, and 

represents the measure of an angle in standard position whose terminal ray includes the 

point. In the polar system, the same point can be represented many ways. 

3.13.A.2 – The coordinates of a point in the polar coordinate system, ( ),r  , can be 

converted to coordinates in the rectangular coordinate system, ( ),x y , using 

cosx r = and siny r = . 

3.13.A.3 – The coordinates of a point in the rectangular coordinate system, ( ),x y , can 

be converted to coordinates in the polar coordinate system, ( ),r  , using 

2 2r x y= + and arctan
y

x


 
=  

 
for 0x  or arctan

y

x
 

 
= + 

 
 for 0x  . 

3.13.A.4 – A complex number can be understood as a point in the complex plane and 

can be determined by its corresponding rectangular or polar coordinates. When the 

complex number has the rectangular coordinates ( ),a b , it can be expresses as a bi+ . 

When the complex number has polar coordinates ( ),r  , it can be expresses as 

( ) ( )cos sinr i r + . 

3.14 – Polar Function Graphs (2 – 3 class periods) 

 3.14.A – Construct graphs of polar functions. 

3.14.A.1 – The graph of the function ( )r f = in polar coordinates consists of input-

output pairs of values where the input values are angle measures, and the output values 

are radii. 

3.14.A.2 – The domain of the polar function ( )r f = , given graphically, can be 

restricted to a desired portion of the function by selecting endpoints corresponding to 

the desired angle and radius. 

3.14.A.3 – When graphing polar functions in the form of ( )r f = , changes in input 

values correspond to changes in angle measure from the positive x-axis, and changes in 

output values correspond to changes in distance from the origin. 

3.15 – Rates of Change in Polar Functions (2 – 3 class periods) 

 3.15.A – Describe characteristics of the graph of a polar function. 



3.15.A.1 – If a polar function, ( )r f = , is positive and increasing or negative and 

decreasing, then the distance between ( )f  and the origin is increasing. 

3.15.A.2 – If a polar function, ( )r f = , is positive and decreasing or negative and 

increasing, then the distance between ( )f  and the origin is decreasing. 

3.15.A.3 – For a polar function, ( )r f = , if the function changes from increasing to 

decreasing or decreasing to increasing on an interval, then the function has a relative 

extremum on the interval corresponding to a point relatively closest to or farthest from 

the origin. 

3.15.A.4 – The average rate of change of r with respect to   over an interval of  is the 

ratio of the change in the radius values to the change in   over an interval of  . 

Graphically, the average rate of change indicates the rate at which the radius is changing 

per radian. 

3.15.A.5 – The average rate of change of r with respect to   over an interval of   can 

be used to estimate values of the function within the interval. 

 

 

Unit 4 – Functions Involving Parameters, Vectors, and Matrices (0% of exam) (35 class 

periods) 

 

4.1 – Parametric Functions (2 class periods) 

 4.1.A – Construct a graph or table of values for a parametric function represented analytically. 

4.1.A.1 – A parametric function in 2 , the set of all ordered pairs of two real numbers, 

consists of a set of two parametric equations in which two dependent variables, x and y, 

are dependent on a single independent variable, t, called the parameter. 

4.1.A.2 – Because variables x and y are dependent on the independent variable, t, the 

coordinates ( ),i ix y at time 
it can be written as functions of t and can be expressed as a 

single parametric function ( ) ( ) ( )( ),f t x t y t= , where in this case x and y are names of 

two functions. 

4.1.A.3 – A numerical table of values can be generated for the parametric function 

( ) ( ) ( )( ),f t x t y t= by evaluating 
ix and 

iy  at several values of 
it within the domain. 

4.1.A.4 – A graph of a parametric function can be sketched by connecting several points 

from the numerical table of values in order of increasing value of t. 



4.1.A.5 – The domain of the parametric function f is often restricted, which results in 

start and end points on the graph of f. 

4.2 – Parametric Functions Modeling Planar Motion (2 class periods) 

4.2.A – Identify key characteristics of a parametric planar motion function that are related to 

position. 

4.2.A.1 – A parametric function given by ( ) ( ) ( )( ),f t x t y t= can be used to model 

particle motion in the plane. The graph of this function indicates the position at time t. 

4.2.A.2 – The horizontal and vertical extrema of a particle’s motion can be determined 

by identifying the maximum and minimum values of the functions ( )x t and ( )y t , 

respectively. 

4.2.A.3 – The real zeros of the function ( )x t correspond to y-intercepts, and the real 

zeros of ( )y t correspond to x-intercepts. 

4.3 – Parametric Functions and Rates of Change (2 class periods) 

4.3.A – Identify key characteristics of a parametric planar motion function that are related to 

direction and rate of change. 

4.3.A.1 – As the parameter increases, the direction of planar motion of a particle can be 

analyzed in terms of x and y independently. If ( )x t is increasing or decreasing, the 

direction of motion is to the right or left, respectively. If ( )y t is increasing or 

decreasing, the direction of motion is up or down, respectively. 

4.3.A.2 – At any given point in the plane, the direction of planar motion may be different 

for different values of t. 

4.3.A.3 – The same curve in the plane can be parametrized in different ways and can be 

traversed in different directions with different parametric functions. 

4.3.A.4 – Over a given interval  1 2,t t within the domain, the average rate of change can 

be computed for ( )x t and ( )y t independently. The ratio of the average rate of change 

of y to the average rate of change of x gives the slope of the graph between the points 

on the curve corresponding to 
1t and 

2t , so long as the average rate of change of 

( ) 0x t  . 

4.4 – Parametrically Defined Circles and Lines (2 class periods) 

 4.4.A – Express motion around a circle or along a line segment parametrically. 



4.4.A.1 – A complete counterclockwise revolution around the unit circle that starts and 

ends at (1, 0) and is centered at the origin can be modeled by 

( ) ( )( ) ( ), cos , sinx t y t t t= with domain 0 2t    

4.4.A.2 – Transformations of the parametric function ( ) ( )( ) ( ), cos , sinx t y t t t= can 

model any circular path traversed in the plane. 

4.4.A.3 – A linear path along the line segment from the point ( )1 1,x y to the point 

( )2 2,x y can be parametrized many ways, including using an initial position ( )1 1,x y and 

rates of change for x with respect to t and y with respect to t. 

4.5 – Implicitly Defined Functions (2 class periods) 

 4.5.A – Construct a graph of an equation involving two variables. 

4.5.A.1 – An equation involving two variables can implicitly describe one or more 

functions. 

4.5.A.2 – An equation involving two variables can be graphed by finding solutions to the 

equation. 

4.5.A.3 – Solving for one of the variables in an equation involving two variables can 

define a function whose graph is part or all of the graph of the equation. 

 4.5.B – Determine how the two quantities related in an implicitly defined function vary together. 

4.5.B.1 – For ordered pairs on the graph of an implicitly defined function that are close 

together, if the ratio of the change in the two variable is positive, then the two variables 

simultaneously increase or both decrease; conversely, if the ratio is negative, then as 

one variable increases, the other decreases. 

4.5.B.2 – The rate of change of x with respect to y or of y with respect to x can be zero, 

indicating vertical or horizontal intervals, respectively. 

4.6 – Conic Sections (2 class periods) 

 4.6.A – Represent conic sections with horizontal or vertical symmetry analytically. 

4.6.A.1 – A parabola with vertex ( ),h k can, if 0a  , be represented analytically as 

( )
2

x h a y k− = − if it opens left or right, or as ( )
2

y k a x h− = − if it opens up or down. 

4.6.A.2 – An ellipse centered at ( ),h k with horizontal radius a and vertical radius b can 

be represented analytically as 
( ) ( )

2 2

2 2
1

x h y k

a b

− −
+ = . A circle is a special case of an 

ellipse where a b= . 



4.6.A.3 – A hyperbola centered at ( ),h k with vertical and horizontal lines of symmetry 

can be represented algebraically as 
( ) ( )

2 2

2 2
1

x h y k

a b

− −
− = for a hyperbola opening left 

and right, or as 
( ) ( )

2 2

2 2
1

y k x h

b a

− −
− = for a hyperbola opening up and down. The 

asymptotes are ( )
b

y k x h
a

− =  − . 

4.7 – Parametrization of Implicitly Defined Functions (2 class periods) 

 4.7.A – Represent a curve in the plane parametrically. 

4.7.A.1 – A parametrization ( ) ( )( ),x t y t for an implicitly defined function will, when 

( )x t and ( )y t  are substituted for x and y, respectively, satisfy the corresponding 

equation for every value of t in the domain. 

4.7.A.2 – If f is a function of x, then ( )y f x= can be parametrized as 

( ) ( )( ) ( )( ), ,x t y t t f t= . If f is invertible, its invers can be parametrized as 

( ) ( )( ) ( )( ), ,x t y t f t t= for an appropriate interval of t. 

 4.7.B – Represent conic sections parametrically. 

4.7.B.1 – A parabola can be parametrized in the same way that any equation can be 

solved for x or y can be parametrized. Equations that can be solved for x can be 

parametrized as ( ) ( )( ) ( )( ), ,x t y t f t t= by solving for x and replacing y with t. 

Equations that can be solved for y can be parameterized as ( ) ( )( ) ( )( ), ,x t y t t f t= by 

solving for y and replacing x with t. 

4.7.B.2 – An ellipse can be parametrized using the trigonometric functions 

( ) cosx t h a t= + and ( ) siny t k b t= + for 0 2t    

4.7.B.3 – A hyperbola can be parametrized using trigonometric functions. For a 

hyperbola that opens left and right, the functions are ( ) secx t h a t= + and 

( ) tany t k b t= + for 0 2t   . For a hyperbola that opens up and down, the 

functions are ( ) tanx t h a t= + and ( ) secy t k b t= + for 0 2t   . 

4.8 – Vectors (3 class periods) 

 4.8.A – Identify characteristics of a vector. 

4.8.A.1 – A vector is a directed line segment. When a vector is placed in the plane, the 

point at the beginning of the line segment is called the tail, and the point at the end of 



the line segment is called the head. The length of the line segment is the magnitude of 

the vector. 

4.8.A.2 – A vector 1 2PP with two components can be plotted in the xy-plane from 

( )1 1 1,P x y= to ( )2 2 2,P x y= . The vector is identified by a and b where 
2 1a x x= − and 

2 1b y y= − . The vector can be expressed as ,a b . A zero vector 0, 0 is the trivial 

case when 
1 2P P= . 

4.8.A.3 – The direction of the vector is parallel to the line segment from the origin to the 

points with coordinates ( ),a b . The magnitude of the vector is the square root of the 

sum of the squares of the components. 

4.8.A.4 – For a vector represented geometrically in the plane, the components of the 

vector can be found using trigonometry. 

 4.8.B – Determine sums and products involving vectors. 

4.8.B.1 – The multiplication of a constant and a vector results in a new vector whose 

components are found by multiplying the constant by each of the components of the 

original vector. The new vector is parallel to the original vector. 

4.8.B.2 – The sum of two vectors in 2 is a new vector whose components are found by 

adding the corresponding components of the original vectors. The new vector can be 

represented graphically as a vector whose head corresponds to the head of the second 

vector when the second vector’s tail is located at the first vector’s head. 

4.8.B.3 – The dot product of two vectors is the sum of the products of their 

corresponding components. That is, 1 1 2 2 1 2 1 2, ,a b a b a a b b= + . 

 4.8.C – Determine a unit vector for a given vector.  

4.8.C.1 – A unit vector is a vector of magnitude 1. A unit vector in the same direction as 

a given nonzero vector can be found by scalar multiplying the vector by the reciprocal of 

its magnitude. 

4.8.C.2 – The vector ,a b can be expresses as ai b j+ in 2 , where i and j  are unit 

vectors in the x and y directions, respectively. That is 1, 0i = and 0,1j = . 

4.8.D – Determine angle measures between vectors and magnitudes of vectors involved in 

vector addition. 

4.8.D.1 – The dot product is geometrically equivalent to the product of the magnitudes 

of the two vectors and the cosine of the angle between them. Therefore, if the dot 

product of two nonzero vectors is zero, then the vectors are perpendicular. 



4.8.D.2 – The Law of Sines and Law of Cosines can be used to determine side lengths 

and angle measures of triangles formed by vector addition. 

4.9 – Vector-Values Functions (1 class period) 

 4.9.A – Represent planar motion in terms of vector-valued functions. 

4.9.A.1 – The position of a particle moving in a plane that is given by the parametric 

function ( ) ( ) ( )( ),f t x t y t= may be expressed as a vector-valued function, 

( ) ( ) ( )p t x t i y t j= + or ( ) ( ) ( ),p t x t y t= . The magnitude of the position vector at 

time t is gives the distance of the particle from the origin. 

4.9.A.2 – The vector-valued function ( ) ( ) ( ),v t x t y t= can be used to express the 

velocity of a particle moving in a plane at different times, t. At time t, the sign of ( )x t

indicates if the particle is moving right or left, and the sign of ( )y t indicates if the 

particle is moving up or down. The magnitude of the velocity vector at time t gives the 

speed of the particle. 

4.10 – Matrices (2 class periods) 

 4.10.A – Determine the product of two matrices. 

  4.10.A.1 – An n m matrix is an array consisting of n rows and m columns. 

  4.10.A.2 – Two matrices can be multiplied if the number of columns in the first matrix  

equals the number of rows in the second matrix. The product of the matrices is a new 

matrix in which the component in the ith row and jth column is the dot product of the 

ith row of the first matrix and the jth column of the second matrix. 

4.11 – The Inverse and Determinant of a Matrix (2 class periods) 

 4.11.A – Determine the inverse of a 2 2 matrix. 

4.11.A.1 – The identity matrix, I, is a square matrix consisting of 1s on the diagonal from 

the top left to the bottom right and 0s everywhere else. 

4.11.A.2 – Multiplying a square matrix by its corresponding identity matrix results in the 

original square matrix. 

4.11.A.3 – The product of a square matrix and its inverse, when it exists, is the identity 

matrix of the same size. 

4.11.A.4 – The inverse of a 2 2 matrix, when it exists, can be calculated with or without 

technology. 

 4.11.B – Apply the value of the determinant to invertibility and vectors. 



4.11.B.1 – The determinant of the matrix 
a b

A
c d

 
=  
 

is ad bc− . The determinant can 

be calculated with or without technology and is denoted det(A). 

4.11.B.2 – If a 2 2 matrix consists of two column or row vectors from 2 , then the 

nonzero absolute value of the determinant of the matrix is the area of the parallelogram 

spanned by the vectors represented in the columns or rows of the matrix. If the 

determinant equals 0, then the vectors are parallel. 

  4.11.B.3 – The square matrix A has an invers if and only if ( )det 0A  . 

4.12 – Linear Transformations and Matrices (1 class period) 

 4.12.A – Determine the output vectors of a linear transformation using a 2 2 matrix. 

4.12.A.1 – A linear transformation is a function that maps an input vector to an output 

vector such that each component of the output vector is the sum of constant multiples 

of the input vector components. 

   4.12.A.2 – A linear transformation will map the zero vector to the zero vector. 

  4.12.A.3 – A single vector in 2 can be expressed as a 2 1 matrix. A set of n vectors in  

2 can be expressed as a 2 n matrix. 

4.12.A.4 – For a linear transformation, L, from 2 to 2 , there is a unique 2 2 matrix, 

A, such that ( )L v Av=  for vectors in 2 . Conversely, for a given 2 2 matrix, A, the 

function ( )L v Av= is a linear transformation from 2 to 2 . 

4.12.A.5 – Multiplication of a 2 2 transformation matrix, A, and a 2 n matrix of the n 

input vectors gives a 2 n matrix of the n output vectors for the linear transformation 

( )L v Av= . 

4.13 – Matrices as Functions (3 class periods) 

 4.13.A – Determine the association between a linear transformation and a matrix. 

4.13.A.1 – The linear transformation mapping ,x y to 11 12 21 22,a x a y a x a y+ + is 

associated with the matrix 
11 12

21 22

a a

a a

 
 
 

. 

4.13.A.2 – The mapping of the unit vectors in a linear transformation provides valuable 

information for determining the associated matrix. 



4.13.A.3 – The matrix 
cos sin

sin cos

 

 

− 
 
 

is associated with a liner transformation of 

vectors that rotates every vector an angle  counterclockwise about the origin. 

4.13.A.4 – The absolute value of the determinant of a 2 2 transformation gives the 

magnitude of the dilation of regions in 2 under the transformation. 

 4.13.B – Determine the composition of two linear transformations. 

  4.13.B.1 – The composition of two linear transformations is a linear transformation. 

  4.13.B.2 – The matrix associated with the composition of two linear transformations is  

the product of the matrices associated with each linear transformation. 

 4.13.C – Determine the inverse of a linear transformation. 

4.13.C.1 – Two linear transformations are inverses if their composition maps any vector 

to itself. 

4.13.C.2 – If a linear transformation, L, is given by ( )L v Av= , then its inverse 

transformation is given by ( )1 1L v A v− −= , where 1A− is the inverse of the matrix A. 

4.14 – Matrices Modeling Contexts (3 class periods) 

4.14.A – Construct a model of a scenario involving transitions between two states using 

matrices. 

4.14.A.1 – A contextual scenario can indicate the rate of transitions between states as 

percent changes. A matrix can be constructed based on these rates to model how states 

change over discrete intervals. 

 4.14.B – Apply matrix models to predict future and past states for n transition steps. 

4.14.B.1 – The product of a matrix that models transitions between states and a 

corresponding state vector can predict future states. 

4.14.B.2 – Repeated multiplication of a matrix that models the transitions between 

states and corresponding resultant state vectors can predict the steady state, a 

distribution between states that does not change from one step to the next. 

4.14.B.3 – The product of the inverse of a matrix that models transitions between states 

and a corresponding state vector can predict past states. 

 


